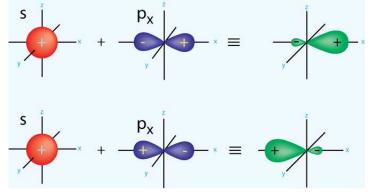
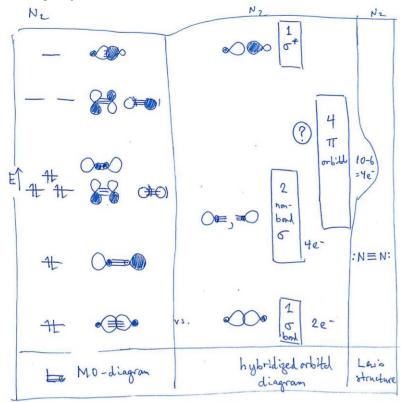

1 Morning class week 6 day 2: sp and sp^2 hybridization



1. sp^2 hybridization takes place at SN 3 centers. The sp^2 hybridization scheme is shown below.


- 2. You will learn in class how to generate the hybridized orbital diagram for formaldehyde, H_2CO . Please draw hybridized orbital diagrams for the following other SN 3 based molecules:
 - (a) ethylene, C_2H_4
 - (b) butadiene, $CH_2CHCHCH_2$
 - (c) benzene, C_6H_6 . In benzene, the C atoms form a perfectly regular hexagon of bonded atoms.
 - (d) ozone, O_3
 - (e) the carbonate ion, CO_3^{2-} .
- 3. It is possible to combine SN 3 and SN 4 sites into a single hybridized orbital diagram. You will learn in class how to do so with acetone, CH₃COCH₃. Please draw hybridized orbital diagrams for:
 - (a) formic acid, HCO_2H
 - (b) TNT, trinitrotoluene

4. Finally, there is *sp* hybridization, see below, which is used for SN 2 geometries.

One of the MO diagrams you have previously studied is that of N₂, shown below. We can therefore make an N₂ electron Rosetta Stone. After studying this drawing, please draw hybridized orbital diagrams for the three molecules listed below. The last of the three molecules combines sp and sp^3 hybridization.

- (a) BeH_2
- (b) CO_2
- (c) CH_3CN