1 Morning class week 6 day 3: Hybridization

1. Main group hybridization

3. Linear sp and planer sp^2 hybridization

- (a) sp hybridization, the linear hybridization scheme: In molecules such as N₂ and HCCH, the main group atom has either just one bond to it or two bonds which are in a straight line. For such atoms we use sp hybridization.
 - To generate the four orbitals used in sp hybridization, start off in the left-most column with three 2p and one 2s atomic orbitals.
 - Now mix a 2s and a 2p orbital to generate the four orbitals involved in sp hybridization.
- (b) sp² hybridization, the planar hybridization scheme: In molecules such as water, H₂O, and acetone, CH₂O, the central main group atom has either just two bonds, which are not in a straight line, or three bonds, which are in a plane. For such atoms we use sp² hybridization.
 - i. To generate the four orbitals used in sp^2 hybridization, start off in the left-most column with three 2p and one 2s atomic orbitals.
 - Now mix a 2s and a 2p orbital to generate one of the sp² hybrids pointing in the direction of one of the three planar directions.
 - Now mix another pair of orbitals to generate the four orbitals in the sp² hybridization scheme.

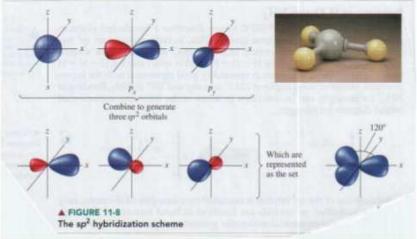
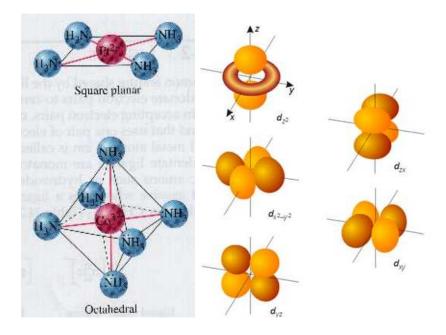



Figure 2: sp² hybridization

- (c) Please review what you have learned. The diagram shown above may be an aid in this review process.
- 2. Transition metal hybridization includes d-orbitals. d-orbital hybridization allows, among other geometries, the octahedral and the square planar geometries, see below Pt²⁺(NH₃)₄ and Co³⁺(NH₃)₆. Of the two, the octahedral geometry is the more common. The square planar geometry dominates for transition metals with exactly eight valence d-electrons.
- 3. Shown below are the five d-orbitals. Please draw these five d-orbitals on your own. In drawing these

orbitals, to obtain a 3-D perspective, it is best to partially eclipse the lobes, see picture.

- (a) dsp^2 hybridization, the square planar hybdridization scheme uses the $x^2 y^2$ orbital.
 - i. To generate square planar hybridization, please start by drawing, on the left side of an empty page, the valence $d_{x^2-y^2}$, p_x , p_y , and s orbitals.
 - ii. Please first mix the s and $d_{x^2-y^2}$ orbitals.
 - iii. Next mix the p_x orbital with one of the s and $d_{x^2-y^2}$ mixes.
 - iv. Finally mix the p_y orbital with the other of the s and $d_{x^2-y^2}$ mixes.
 - v. The square planar hybridization scheme has been achieved. Please review.
- (b) d^2sp^3 hybridization, the octahedral hybridization scheme uses the d_{z^2} and $d_{x^2-y^2}$ orbitals.
 - i. To generate octahedral hybridization, please start by drawing, on the left side of an empty page, the valence $d_{x^2-y^2}$, d_{z^2} , p_x , p_y , p_y , and s orbitals.
 - ii. Please first mix the s and d_{z^2} orbitals.
 - iii. Next mix the p_z orbital with one of the s and d_{z^2} mixes.
 - iv. Now, please mix $d_{x^2-y^2}$ with the other of the s and d_{z^2} mixes.
 - v. Please mix p_x with one of these last set of mixes and mix p_y with the other of the last two mixes.
 - vi. The octahedral hybridization scheme has been achieved. Please review.